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Abstract
Artificial intelligence (AI) stands as one of the most remarkable advancements in human history, finding 
applications across various sectors such as industry, healthcare, law enforcement, and finance. Despite its 
widespread integration, the mining industry, from exploration to exploitation, has been slow in fully 
utilizing the potential of AI. This is particularly evident in areas such as monitoring underground 
operations and detecting anomalies like seismic events and faults in mechanical systems. As the use 
backfill materials becomes crucial for mineral extraction, ongoing research challenges arise in 
comprehending and studying the diverse properties (mechanical, rheological, physical) of these materials. 
Cemented paste backfill (CPB) is the prevailing choice for mine backfill, with unconfined compressive 
strength (UCS) being a critical property defining its mechanical behavior. However, predicting the UCS of
CPB remains a formidable challenge.

Exploiting the extensive big data generated by the mining industry provides an opportunity to create 
intelligent systems. This research aims to develop a smart tool utilizing Machine Learning (ML) and Deep
Learning (DL) to predict the UCS of cemented paste backfills. To achieve this, a comprehensive dataset 
was compiled from Agnico-Eagle mines and supplemented with laboratory data, resulting in a rich 
database (DB) of 10,050 CPB specimens that encompass the physical, chemical, and mineralogical 
properties of ingredients. Prior to model training, an exploratory data analysis was conducted. Various 
intelligent models, including Random Forest (RF), Gradient Boosting Regressor (GBR), eXtreme 
Gradient Boosting Regressor (XGBR), and the Deep Neural Network (DNN), were employed. Based on 
performance indicators, the top-performing models, GBR and DNN, demonstrated coefficients of 
correlation (R) equal to 0.970 and 0.969, respectively. These models underwent validation in the 
laboratory through the preparation of new CPB mixtures. To make these models applicable for the mining 
industry, a user-friendly web application was developed, ensuring accessibility and ease of use for 
industry professionals.
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backfill, web application

Introduction
Backfill has evolved into a crucial component of underground mine extraction, offering numerous 
economic and environmental advantages in Canada and globally (Brackebusch and Shillabeer, 1998; Fall 
et al., 2005; Orejarena and Fall, 2008). Particularly as a secondary support, it plays a vital role in 
maintaining the stability of underground excavations (Mitchell, 1989; Mitchell and Wong, 1982). CPB 
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stands out as the predominant choice in the mining industry, comprising mine tailings (70–85% solids 
content), a hydraulic binder (2–8% content) and mixing water. The mechanical properties, specifically the 
unconfined compressive strength, are significantly influenced by its ingredients, namely, the mineralogy, 
chemistry and physical properties of tailings, cement type and proportion, and water chemistry (Fall et al., 
2005, 2004; Fall and Benzaazoua, 2005). Traditionally, UCS is predicted using conventional linear and 
non-linear regression methods based on experimental data (Arioglu, 1983; Lamos and Clark, 1989; 
Mitchell and Wong, 1982; Swan, 1985; Yu, 1989). However, achieving an accurate regression prediction 
with these empirical models is challenging. Moreover, these models are tailored to specific mines based 
on tailings type and do not encompass all the chemical, mineralogical and physical characteristics of CPB 
ingredients, limiting their generalizability.
 
In order to enhance the prediction of mechanical properties, it is crucial to transition from conventional 
regression methods to more sophisticated approaches. Currently, the talk is about the revolution of AI 
(Industry 4.0), a phenomenon evident in various manufacturing sectors. However, the mining industry has 
yet to embrace fully this technological advancement. Given the large amount of big data generated from 
mines, there is an opportunity to harness it for the development of intelligent systems. In this context, the 
objectives of this research study are to create intelligent models for predicting the UCS of CPB. 
However, several researchers have employed ML and DL models to forecast the UCS of CPB. Qi et al. 
(2023) trained a DNN of four hidden layers on a database containing 986 CPB specimens, considering the 
physical and chemical properties of the tailings, cement type, cement-to-tailings ratio, mass concentration,
and curing time. The results show that the evolution of the network's loss function exhibits instabilities 
during training and the model gave a correlation coefficient of 0.967. Arachchilage et al. (2023),  used ML
models, namely GBR, RF, Support vector regression (SVR), and an Artificial Neural Network (ANN) 
with two hidden layers for UCS prediction based on literature and experimental data (307 CPB 
specimens), incorporating physical properties of tailings, chemical properties of cement, binder content, 
liquid-to-solid ratio, water-to cement ratio and curing time. The best-performing model was GBR, which 
gave a coefficient of determination of 0.96. In a study by Hu et al. (2022), the effect of temperature in 
alpine regions on the development of the UCS was investigated based on experimental data of 51 CPB 
samples, where they integrated sand-to-cement ratio, curing temperature, short-term curing time and 
slurry concentration as input variables to the ML model to predict UCS. The results demonstrate that low 
temperature (< 20C) has the most significant effect on the hydration reaction process, and that the 
prediction model combined with the Sparrow Search Algorithm (SSA-ELM) achieved a correlation 
coefficient of 0.99. Additionally, other researchers have also developed intelligent models for predicting 
UCS of CPB (Lu et al., 2019; Sun et al., 2020).

While these studies play a crucial role in providing guidance, they are hindered by limitations that impede 
the effective adoption of ML or DL models. The databases used are often insufficient, containing < 2000 
tests, limiting the development of intelligent models. Moreover, the studies overlook the simultaneous 
consideration of various factors affecting CPB strength, such as mineralogy, chemistry, physical 
properties of tailings, mixing water, binder type and proportion, solids mass concentration, slump, and 
curing time (long- and short-terms). Additionally, the performance of these models is not systematically 
evaluated by researchers. Furthermore, the overarching goal of developing intelligent models is to exploit 
their potential, yet their practical implementation as lines of code poses challenges for the industry. The 
emphasis in this research is on model development rather than addressing the operational hurdles 



associated with integrating them into industry practices. Overall, these limitations underscore the need for 
a more comprehensive and practical approach in advancing the application of intelligent models in the 
field of mining engineering.

In addressing the limitations identified in the existing literature, we introduce an advanced tool designed 
for more accurate prediction of CPB strength. This entails leveraging a substantial database comprising 
10,050 CPB specimens for the training of both ML models and a DNN. After training, model predictions 
undergo validation in a laboratory setting, allowing for comprehensive evaluation of their performance. 
Ultimately, a web application is crafted to operationalize the most robust model, ensuring practical and 
accessible utilization.

Materials and Methodology
Materials 
In this investigation, five distinct types of tailings sourced from different mining companies (Agnico 
Eagle (LaRonde mine, Goldex mine, and Canadian Malartic mine), IAMGOLD (Westwood mine), and 
Hecla Quebec Mines (Casa Berardi mine)) were employed. These mine sites are situated in Abitibi-
Témiscamingue in western Quebec, Canada (Figure 1). The tailings were transported in large 200 L 
barrels. The preparation process involved the initial removal of supernatant water, followed by meticulous
homogenization to prevent particle segregation (Figure 2, step 1). Subsequently, the tailings were evenly 
portioned into 20 L plastic pails. Samples were extracted from these homogenized tailings and subjected 
to drying to ascertain their water content by weight (w%). Further deagglomeration and homogenization 
were performed using the four-point method. Relative density or specific gravity (Gs) was determined 
utilizing a helium pycnometer (ULTRAPYC 1200e), while particle size distributions (PSD) were analyzed
using a Mastersizer 3000 laser diffraction particle size analyzer from Malvern Panalytical (Figure 2, step 
2). Various binding agents, including GU, and blends of GU (ie., with Slag, type C fly ash, type F fly ash) 
were employed in conjunction with tap water and process water as a mixing water. 

Methodology 
The research methodology in this study comprises two parts. Initially, the focus is on laboratory work, 
starting with tailings homogenization and characterization as mentioned in the previous section. 
Subsequently, various backfill mixtures are prepared using these tailings, hydraulic binders, and mixing 
water (Figure 2, step 3). These mixtures are formulated using different binder ratios (%Bw = 
100Mbinder/Mtailings) varying between 2–8%. and with various solids mass concentration (%Cw = 
100Msolids/Mbulk) ranging from 70–77%, aiming for a slump value between 5.75–10 in. (146–254 mm). 
The slump values are measured using the standard Abrams cone method, following the guidelines outlined
in the ASTM C143 standard (ASTM International, 2020). The entire set of UCS data will be subsequently
used for the development of ML models and a DNN in the later stages of the research. 



 

Figure 1. The five-mining site location in Abitibi-Témiscamingue.
 

In the laboratory experimental phase at the URSTM (Research and Service Unit in Mineral Technology) 
at UQAT, approximately 324 CPB specimens were manufactured. These specimens are then stored in a 
wet room with a controlled environment, maintaining a relative humidity higher than 90% and a 
temperature of 23°C3° (Figure 2, step 4). After each curing time (7, 14, 28, 56, 90 and 105 days), the 
specimens underwent UCS tests using a stiff mechanical press MTS 10/GL with 50 kN maximum 
capacity while run at a constant displacement velocity of 1 mm/min in accordance with the ASTM C39 
standard (ASTM International, 2021). The results of these tests allow determining the Uniaxial 
Compressive Strength (UCS) (Figure 2, step 5). 

The latter part of this investigation focuses on the development and programming of ML and DL 
algorithms. Initially, the process commenced with data collection, incorporating laboratory results from 
324 specimens and additional data obtained from various mines, for a total of 9726 specimens. The 
subsequent crucial step was exploratory data analysis (EDA). This encompassed addressing missing 
values in the databases, examining correlations among variables, normalizing them to ensure consistent 
scaling for optimal model learning, and annotating categorical data if required. Following the 
comprehensive processing of the database, it underwent a division into two segments: 80% of the data 
serves as the training set for model learning (development), while the remaining 20% constitutes the test 
set for model evaluation (validation).



The implementation of the models involves optimizing their hyperparameters. The evaluation of their 
performance guided by regression metrics, aids the selection of the most effective model. To validate 
operationalizing these models, a web application will be developed for user-friendly accessibility. The 
methodology adopted in this study is summarized in Figure 2.

Figure 2. Methodology employed in the study.

Tailings characterisation
Figure 3 illustrates the particle size distribution of tailings, providing a means to assess their fineness. The 
curves depicted in the figure enable the evaluation of various tailings particle size parameters, as outlined 
in Table 1. Notably, the mine tailings fall within the silt particle size category. To obtain high paste 
backfill strength, it is essential for the tailings to exhibit well-graded particle size distribution. In our 
specific case study, the tailings exhibit a D10 ranging between 3–5 m, a D50 between 18–40 m, and a D90

between 87–165 m. The uniformity coefficient (CU) of tailings exceeds 2 (> 5), indicating a quasi-well-
graded particle size distribution, potentially conducive to optimal performance. 



Table 1. Physical parameters of tailings.
Origin of the tailings w (%) %Cw Gs CC CU P20m (d<20m)
LaRonde mine 23.50 81.0 3.18 1.14 10.68 33
Westwood mine 23.39 79.1 2.82 1.15 7.03 48
Goldex mine 16.69 85.7 2.80 1.15 20.50 35
Canadian Malartic mine 20.30 83.1 2.76 1.07 9.79 42
Casa Berardi mine 23.10 81.2 2.97 0.83 8.93 51
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Figure 3. Particle size distribution of tailings samples.

Predicting UCS through intelligent methods 
Exploratory Data Analysis (EDA)
Prior to initiating model training on the database, data processing is a prerequisite. Hence, this study 
undertook an exploratory analysis of the data. The initial phase involving addressing missing values, 
which were subsequently removed from the database. The second phase encompassed univariate, 
bivariate, and multivariate analyses. These analyses aimed to ascertain the frequency of each data item, 
comprehend the impact of one variable on another, and identify as well as assess the presence of outliers.
A total of 6,750 CPB specimens were selected, focusing on key features encompassing the physical, 
mineralogical, and chemical properties of tailings, as well as parameters related to the mixture (eg, cement
type, proportion, solids mass concentration, slump), chemical properties of the mixing water, and curing 
time.

Figure 4 depicts trends among selected data points on a two-dimensional plane, providing insights into 
their relationships. The point plots on the Cartesian plane do not reveal a distinct linear relationship. 



However, the dashed red line signifies a regression estimate illustrating the association between these 
variables. These observed trends align with findings from previous studies (Belem et al., 2000; Fall et al., 
2005, 2004).

Table 2 provides a statistical overview of all variables, revealing a substantial variance in standard 
deviation among them. This diversity poses challenges for model learning, creating complexities and 
hindering model convergence. Notably, the probability density function (Figure 6a) depicts a scattered 
distribution of the UCS variable, leading to the identification of outliers in Figure 5a. These outliers can 
significantly impact the performance of prediction models, as highlighted in previous studies (Nyitrai and 
Virág, 2019). To address this issue, data normalization is imperative to mitigate the adverse effects, as 
suggested by John (1995) and Osborne and Overbay (2004). Figure 6b illustrates a Gaussian distribution 
post-normalization, with fewer of the outliers evident in Figure 5b, achieved through the quantile 
transformation method.

 

Figure 4. Trends between variables.



Figure 5. UCS Box plot: (a) before normalization, (b) after normalization

Figure 6. UCS probability density: (a) before normalization, (b) after normalization

Table 2. Statistical description of variables.
Mean Std. Min. Max. 25th perc. Median 75th perc.

Gs 2.82 0.06 2.76 3.21 2.79 2.79 2.8
Cc 1.02 0.07 0.86 1.15 1.055 1.055 1.055
Cu 15.59 4.93 5.6 20.50 10.68 18.5 18.5
P20μm (%) 38.61 6.86 32 70 35 35 40
%Muscovite 7.66 7.65 0 40 4.38 4.38 4.38
%Other silicates 9.71 5.39 0 25.4 11.65 11.65 11.65
%Pyrite 1.66 4.12 0 27.5 0 0 2.68
%Other sulfides 0.19 0.72 0 3.28 0 0 0
Ca content (mg/kg) 31868.8

8
6743.47 4521 40696 32620 32620 32620

Mg content (mg/kg) 12012.9
2

3258.87 1823 14180 13780 13780 13780

S content (mg/kg) 10963.1
3

21509.66 2050 155000.00 2050 2050 16237 

Zn content (mg/kg) 88.36 241.31 20 1313 20 20 89



Slump (po) 7.02 0.63 5 10 6 7 7
Solids content %Cw 74.57 2.31 63.9 93.45 74.6 75.3 75.7
GU Cement (%) 20.51 18.39 10 100 10 10 20
Fly Ash-C (%) 1.92 9.35 0 60 0 0 0
Fly Ash-F (%) 2.09 10.02 0 70 0 0 0
Slag (%) 75.47 27.64 0 90 80 90 90
Binder ratio Bw(%) 3.96 1.5 1 9.22 3 3.1 4.5
SO4

2- in mixing water (mg/l) 498.92 1135.93 25 5000 171 171 171
SO4

2- in tailings water (mg/l) 1825.67 196.45 1715 2355 1715 1715 1715
Curing time (days) 26.10 32.88 1 360 7 21 28
UCS (kPa) 649.94 594.18 0 4581 259.77 519.90 780.00

Considering factors such as data quality (categorical or tabular), data quantity (a substantial database for 
ML model training constraints), the number of features, and an unspecified data distribution, non-
parametric ML models were selected for UCS prediction. In particular, the authors opted for RF, GBR, 
XGBR, and DNN, specifically a Feed-Forward Back Propagation Network (FFBPN).

RF
This algorithm is highly favoured in ML, employing multiple decision trees to form a forest. It utilizes the 
'Bagging' technique, where each tree is trained on a random subset of the database. This approach justifies 
the name ‘Random Forest’. The predictions from all the trees are then combined by averaging, yielding a 
more robust and stable prediction compared to individual decision trees. By relying on bootstrapping to 
split the data, samples can undergo training multiple times on diverse decision trees, contributing to 
enhance performance. This model’s primary advantage lies in its capability to markedly diminish 
overfitting by averaging predictions from various trees, thereby surpassing the Decision Tree Regressor 
(DTR) in terms of generalization and flexibility. However, it comes with a computational drawback, being
slower and less efficient for real-time predictions. Since its adoption, RF has proven valuable in 
addressing various prediction challenges. Applications range from predicting the slope stability to rock 
burst classification (Lin et al., 2018; Zhou et al., 2016), as well as tunnel-induced ground settlement 
analysis (Zhou et al., 2017). 

GBR
Remaining a stalwart in ML, this algorithm has found extensive application in various engineering 
domains (Lu et al., 2019; Zhou et al., 2016). It operates by implementing forest trees and leveraging the 
'Boosting' technique, constructing and training trees sequentially. Acknowledging the relatively low 
performance of each tree, the algorithm employs the 'Gradient Descent' optimization algorithm. This 
allows each tree to rectify the errors of its predecessor, creating a complementary model where the 
weaknesses of some trees are offset by the strengths of others. The algorithm initiates by forming a leaf 
containing the average value of the input on which it has been trained. Subsequently, it constructs the first 
tree, considering the prediction error of the initial leaf. Using the error from the first tree, GBR generates a
new tree, repeating this process until the prediction error is minimized. This iterative approach 
systematically address prediction errors tree by tree, cumulating in the creation of a forest. The outcome 
for a new prediction is determined as the average prediction across all the trees. For a more in-depth 
understanding, refer to the detailed explanation provided by Friedman (2001).



XGBR 
This algorithm is an optimized version of the GBR, designed to enhance both flexibility and efficiency. 
Like its predecessor, it relies on decision tree implementation and boosting. The process involves the 
sequential development of trees, with steps taken to reduce the error rate during successive iterations. The 
algorithm’s initial step is training on the database to obtain an initial prediction. Subsequently, the residual
(difference between the actual value and the predicted value), is calculated. The first tree is then 
constructed by training it on these residuals to minimize them. This process continues with the creation of 
additional trees until developing a tree no longer impacts the algorithm’s performance. During the tree-
building phase, the algorithm calculates a similarity score and output value for each decision node, aiming
to enhance the performance of each tree. 

The distinction between XGBR and GBR lies in the learning improvement mechanism. GBR relies on the 
first-order partial derivative (first-order gradient) of the loss function to adjust the learning process. In 
contrast, XGBR utilizes second-order gradients and incorporates the L1 and L2 regularization method to 
enhance model generalization (Chen and Guestrin, 2016). Due to this refinement in the learning process, 
XGBR is frequently observed to outperform GBR.

DNN
Artificial neural networks draw inspiration from the human brain, where numerous biological neurons 
process information. These neurons receive information through dendrites, transmit it as impulses along 
axons, and relay it to other neurons via synapses. In the context of predictive models, artificial neural 
networks comprise an input layer, hidden layers, and an output layer. All layers are interconnected, and 
neurons within the same layer operate independently. Each neuron is linked to preceding and subsequent 
neurons, featuring parameters such as weight, bias, and the threshold for information transmission. 

In the supervised learning process adopted in this study, the neural network undergoes training through 
two primary steps: forward propagation and back propagation. Forward propagation involves passing 
input data from the first layer to the last, correlating inputs to outputs for the model training. At each layer,
outputs (z) and associated activation functions (a = f(z)) for each neuron are calculated. Neurons compare 
the weighted sum of inputs with a threshold, delivering a response as output. Information transition 
between neurons, occurs via activation functions, facilitating the transformation of input data across the 
network. Back propagation adjusts the parameters of each neuron to minimize the loss function (model 
errors). This involves calculating partial derivatives relative to the weight (wij) and bias (bi) of each layer. 
A comprehensive description of this calculation is available in (Amini et al., 2018; Grus, 2020; Shovic 
and Simpson, 2021). Figure 7 provides an illustrative example of a FFBP as used with a DNN.



Figure 7. Illustration of the architecture of a FFBPN. 

Results and discussion
Hyperparameters tuning
All ML models fall into two primary categories based on the nature of their parameters: parametric 
models and non-parametric models. Parametric models have predefined internal parameters before the 
learning process, while non-parametric models have external parameters that influence learning, known as
hyperparameters. In our case study, the models are non-parametric, featuring a range of hyperparameters. 
Manually selecting values for each parameter can be intricate, and determining the optimal combination 
for the highest model score is even more challenging. To address this complexity, various processes are 
employed to search for these hyperparameters. This optimization step is crucial in the development of 
both ML and DL models. In this study, the authors identified optimal parameters for each model using the 
‘Randomized Search’ method, followed by cross-validation. Tables 3a and 3b presents the optimal 
parameters for each model selected through this method.

Table 3a. Model optimal hyperparameters.
Model Hyperparameters Values

RF

Total number of trees in the forest (n_estimators) 1000
The minimum number of samples required to split an internal node 
(min_samples_split)

2

Maximum tree depth 15

GBR

Learning rate 0.2867
Maximum tree depth 4
The minimum number of samples required to split an internal node 
(min_samples_split)

2

Total number of trees in the forest (n_estimators) 895



Table 3b. Model optimal hyperparameters.
Model Hyperparameters Values

XGBR

The portion of samples designated for fitting the individual base learners 
(subsample)

0.5

Total number of trees in the forest (n_estimators) 400
Maximum tree depth 6
Learning rate 0.5
The minimum loss reduction required to perform a split (gamma) 0

DNN

Number of hidden layers
 First hidden layer 
 Second hidden layer 
 Third hidden layer 
 Fourth hidden layer

Activation function
Learning rate
Optimizer 
Loss function 

4
60 neurons
70 neurons
20 neurons
20 neurons
ReLU, tanh

0.0001
Adam
MSE

Model evaluation and comparison 
In assessing the model quality, the authors employed statistical regression performance indicators, 
including:
 
Correlation coefficient (R)
This gauges the predictive quality of models by quantifying the relationship between predicted and actual 
values. The correlation coefficient ranges from 0–1, with a value nearing 1 signifying a well-fitting model 
capable of generalizing for accurate predictions. Conversely, a value close to 0 indicates a poor fit and, 
consequently, lower prediction quality. It is calculated using the following equation:

R=
∑
i=1

N

( y i
¿− y¿)( y i− y )

√∑
i=1

N

( y i
¿− y¿) ²√∑

i=1

N

( y i− y) ²

Equation 1

The Root Mean Square Error (RMSE) 
RSME k(Equation 2) serves as a pivotal performance metric for a predictive model specifically tailored 
for regression problems. When applied to a defined dataset, it calculates the root mean deviation between 
actual and predicted values. RMSE provides an estimation of the predictive model's proficiency in 
accurately predicting the target value.

RMSE=√ 1N∑
i=1

N

( y i− y i
¿) ² Equation 2



The Mean Absolute Error (MAE)
MAE provides a comprehensive assessment of model error by measuring absolute errors. This approach 
ensures a holistic evaluation without penalizing errors, offering insight into the overall accuracy of the 
model.

 MAE= 1
N
∑
i=1

N

|y i− y i¿| Equation 3

where:
y i

¿
= predicted values.

y i = actual values.

y i
¿ and y i= corresponding predicted and actual average values, respectively.

The curves depicted in Figure 8 compare the predicted values of each model with the actual UCS values 
on the test set, aligning along the 1:1 slope. This visual representation clearly illustrates model ability to 
generalize on new data when a good fit is evident on the slope. Among these models, GBR demonstrated 
the most optimal fit, evidenced by the highest coefficient of correlation (R) at 0.9701. In comparison, 
other models, RF, XGBR and DNN, yielded coefficients of correlation at 0.9588, 0.9635 and 0.9692, 
respectively. Examining the RMSE, GBR achieved a value of 0.2624, outperforming RF (0.2799), XGBR 
(0.2655), and DNN (0.0391).

(a)   (b) 



(c)    (d) 

Figure 8. Model performance (a) RF, (b) GBR, (c) XGBR, (d) DNN

To enhance the evaluation of models, delving into their learning progress is crucial. Therefore, after model
training, the database underwent k-fold cross-validation. This method involves randomly dividing the 
training dataset into k subsets, of which k-1 sets allocated for model training (training set) and one set for 
validation (validation set), as illustrated in Figure 9. In essence, the model is trained on the training set and
evaluated on the validation set, generating a score each time. This cross-validation process iterates k 
times, with k set at 5 in this study. The significant advantage of this method lies in its ability to train the 
model multiple times, facilitating the improvement of its prediction score and mitigating the risk of model 
overfitting.

Figure 9. Scheme depicting the process of cross-validation. 

Figure 10 illustrates the training performance of the models concerning the data to which they are 
exposed. Higher-quality data for model training typically results in improved performance. The blue 
curves depict effective learning on the training data, showcasing a slight decline in score as the data 
quantity increases. This decline is attributed to the challenges inherent in processing vast amounts of 
information. Notably, RF, GBR and XGBR models achieved high prediction scores of 0.92, 0.96 and 
0.97, respectively. The green curves confirm the models’ ability to generalize on new data, as the score 



increases with learning progression. Noteworthy prediction scores (R) were recorded on the validation 
data, standing at 0.88, 0.92 and 0.91 for the RF, GBR and XGBR models, respectively. The minimal 
difference between prediction scores on the training and validation data, along with the convergence of 
these scores toward a stable point, attests to the models’ good fit and their resilience against overfitting. 

For more in-depth assessment of the DNN, the authors monitored the progression of its loss function, 
specifically the MSE, and its root, RMSE. Figure 11 illustrates that throughout the training process, both 
the MSE and RMSE decrease over a series of iterations, corresponding to the training data received. After 
a certain number of iterations, the error stabilizes not only for the training data but also for the validation 
data. It is crucial to note that the errors on the training data consistently remain smaller than those on the 
validation data, with minimal deviation between these two values. This observation validates the 
successful training of the DNN and the prevention of overfitting and underfitting.

(a) (b)

 (c)

Figure 10. Learning curve of models (a) RF, (b) GBR, (c) XGBR.



(a) (b)

Figure 11. DNN performance evolution as a function of the number of iterations: (a) RMSE, (b) MSE.

Model Validation 
To validate the models, eight CPB formulations (Fi, i{1,8}) were experimentally conducted in the 
laboratory, with these recipes absent from the database. The goal was to introduce entirely new data to the 
models, enabling them to make predictions for the corresponding UCS. Figure 12 provides a comparison 
between the predicted UCS from the models and the actual experimental UCS data. Among the models, 
the GBR demonstrated the closest alignment between predicted and actual UCS values, yielding the 
lowest MSE of 21.8 kPa. Following closely is the DNN, although it tends to overestimate the UCS with a 
MSE of 110.25 kPa. In third place is the XGBR, primarily associated with underestimation, presenting a 
MSE of 227.10 kPa. The RF model takes the last position, consistently underestimating with a MSE of 
254.88 kPa. Figure 13 visually illustrates the prediction error of each model for the eight formulations, 
where negative errors indicate UCS underestimation and positive errors signify overestimation.



 

Figure 12. Comparison between predicted UCS values from models and the corresponding experimental
results.

Figure 13. Model prediction errors.



Implementation of high-performance model for UCS prediction
While ML models and DNN, as lines of code, are not yet operational in the mining industry, there is a 
strong recommendation to develop tools for their practical use. This study contributes to this initiative by 
creating a web application, leveraging the GBR as the chosen and reliable model. The functionality of the 
application is outlined in Figure 14, allowing users to input the physical, mineralogical, and chemical 
characteristics of tailings, as well as mixing water properties, mixing parameters (binder type, proportion, 
solids mass concentration, slump), and curing time. Utilizing its learned patterns, the model predicts UCS,
with the results displayed at the bottom of the figure.

Figure 14. Intelligent UCS prediction tool.

Conclusion
This study involved the development of an intelligent tool employing ML algorithms and a DNN to 
predict the UCS of CPB. The prediction was based on a dataset encompassing laboratory experimental 
and mining UCS data, for a total of 10,050 CPB specimens. A comprehensive EDA preceded model 
training, with subsequent optimization of hyperparameters accomplished through the random search 
method followed by 5-fold cross-validation. Validation of model predictions was conducted both in the 
laboratory and through the utilization of performance indicators such as R, RMSE, MSE to assess their 
effectiveness. The derived conclusions are as follows:

• EDA has allowed for: 1) elimination of missing data from the database; 2) identification of 
arbitrary variable distributions and outliers, necessitating data normalization via the quantile 
transformation method; and: 3) identification of strong positive and negative correlations between 
variables, offering a comprehensive insight into the database.



• Learning curves of the models showcase their robust ability to generalize, demonstrating 
resilience against overfitting and underfitting.

• The GBR emerges as the most efficient model, providing a correlation coefficient (R) of 0.97.
• GBR has been implemented in a web application and is poised to become operational in the 

mining industry for UCS prediction.
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